Chronic exertional compartment syndrome

Chronic exertional compartment syndrome is an uncommon, exercise-induced neuromuscular condition that causes pain, swelling and sometimes even disability in affected muscles of your legs or arms.

Anyone can develop chronic exertional compartment syndrome, but it’s more common in athletes who participate in sports that involve repetitive movements, such as running, fast walking, biking and swimming. Chronic exertional compartment syndrome is sometimes called chronic compartment syndrome or exercise-induced compartment syndrome.

Symptoms:

The pain and other symptoms associated with chronic exertional compartment syndrome may be characterized by:

1. Aching, burning or cramping pain in the affected limb — usually the lower leg, but sometimes the thigh, upper arm, forearm or hand

2. Tightness in the affected limb

3. Numbness or tingling in the affected limb

4. Weakness of the affected limb

5. Foot drop, in severe cases, if nerves in your legs are affected

6. Occasionally, swelling or bulging as a result of a muscle hernia

Pain typically happens soon after you start exercising the affected limb, gets progressively worse for as long as you exercise, stops 15 to 30 minutes after the affected limb comes to rest and over time, may begin to persist longer after exercise, possibly lingering for a day or two.

Taking a complete break from exercise may relieve your symptoms, but usually once you take up running again, your symptoms usually come back unless you continue to stretch and do keep up to date with your rehabilitative exercises.

If you experience unusual pain, swelling, weakness, loss of sensation, or soreness related to exercise or sports activities, talk to your doctor because these symptoms may be associated with conditions that require emergency medical treatment. Don’t try to exercise through the pain, as that may lead to permanent muscle or nerve damage — and jeopardize continued participation in your favorite sports.

Sometimes chronic exertional compartment syndrome is mistaken for shin splints. If you think you have shin splints but they don’t get better with self-care, talk to your doctor.

What are the causes?

Your arms and legs have several groupings, or compartments, of muscles, blood vessels and nerves. Each of these compartments is encased by a thick layer of connective tissue called fascia (FASH-ee-uh), which supports the compartments and holds the tissues within each compartment in place. The fascia is inelastic, which means it has little ability to stretch.

In chronic exertional compartment syndrome, exercise or even repetitive muscle contraction causes the tissue pressure within a compartment to increase to an abnormally high level. But because the fascia can’t stretch, the tissues in that compartment aren’t able to expand sufficiently under the increased pressure. Imagine shaking up a soda bottle but leaving the cap on — an enormous amount of pressure builds up.

As the pressure builds up within one of your muscle compartments, with no outlet for release, nerves and blood vessels are compressed. Blood flow may then decrease, causing tissues to get inadequate amounts of oxygen-rich blood, a condition known as ischemia (is-KE-me-uh). Nerves and muscles may sustain damage.

Experts aren’t sure why exercise or muscle contraction creates this excessive pressure in some people, leading to chronic exertional compartment syndrome. Some experts suggest that biomechanics — how you move, such as landing styles when you jog — may have a role. Other causes may include having enlarged muscles, an especially thick or inelastic fascia, or high pressure within your veins (venous hypertension).

In chronic exertional compartment syndrome, exercise or even repetitive muscle contraction causes the tissue pressure within a compartment to increase to an abnormally high level. But because the fascia can’t stretch, the tissues in that compartment aren’t able to expand sufficiently under the increased pressure. Imagine shaking up a soda bottle but leaving the cap on — an enormous amount of pressure builds up.

As the pressure builds up within one of your muscle compartments, with no outlet for release, nerves and blood vessels are compressed. Blood flow may then decrease, causing tissues to get inadequate amounts of oxygen-rich blood, a condition known as ischemia (is-KE-me-uh). Nerves and muscles may sustain damage.

Experts aren’t sure why exercise or muscle contraction creates this excessive pressure in some people, leading to chronic exertional compartment syndrome. Some experts suggest that biomechanics — how you move, such as landing styles when you jog — may have a role. Other causes may include having enlarged muscles, an especially thick or inelastic fascia, or high presse within your veins (venous hypertension).

What are the risk factors?

The condition is most common in athletes under 40, although people of any age can develop chronic exertional compartment syndrome.

People most at risk of developing chronic exertional compartment syndrome are those who engage in exercise that involves repetitive motions or activity. Young female athletes may be at particular risk, for reasons unknown.

Risk factors include engaging in such sports, exercises and activities as:

  • Running
  • Football
  • Soccer
  • Biking
  • Tennis
  • Gymnastics

Overuse of your muscles or overtraining — that is, working out too intensely or too frequently — also can raise your risk of chronic exertional compartment syndrome.

Chronic exertional compartment syndrome isn’t a life-threatening condition and usually doesn’t cause any lasting or permanent damage if you seek appropriate treatment. However, if you continue to exercise despite pain, the repeated increases in compartment pressure can lead to muscle, nerve and blood vessel damage. As a result, you may develop permanent numbness or weakness in affected muscles.

Perhaps the biggest complication of untreated chronic exertional compartment syndrome is its impact on participation in your favorite sports — the pain may prevent you from being active.


Don’t try to exercise through your pain. Limit your physical activities to those that don’t cause pain. For example, if running bothers your legs, you may be able to swim. Use ice or take omega 3s until you can see your doctor and make sure this is NOT an emergency.

The following basic sports and fitness guidelines can help protect your health and safety during exercise:

  • Warm up before starting exercise.
  • Cool down when you’re done exercising.
  • Stop if you’re in pain.
  • Check with your doctor before starting a new exercise program if you have any health issues.
  • Eat a healthy, balanced diet.
  • Stay hydrated.
  • Engage in a variety of physical activities.

Sections of this article are published on http://www.mayoclinic.com/health/chronic-exertional-compartment-syndrome/DS00789

Is running on a soft surface better than on a hard one?

Soft or hard surfaces while running?  That is what people ask me all of the time.  I normally like to tell them to run on the beach barefoot since this is the best for shock absorption of the foot.  But….if someone is getting over a sprain, it is not good to have them run on uneven soft surfaces because the ankle or leg can’t handle the bumps and it may irritate old chronic injuries.

Running on hard surfaces is hard on the body and does add shock to the foot and kinetic chain.  I guess the answer to the question of running on soft surfaces versus hard ones depends on the individual and what is going on with them.  Here is a great article discussing the differences between each option.

Article:

Hirofumi Tanaka, an exercise physiologist at the University of Texas at Austin, bristles when he sees dirt paths carved out of the grass along paved bicycling or running routes. The paths are created by runners who think softer ground protects them from injuries.

Dr. Tanaka, a runner, once tried it himself. He was recovering from a knee injury and an orthopedist told him to stay away from hard surfaces, like asphalt roads, and run instead on softer surfaces, like grass or dirt. So he ran on a dirt path runners had beaten into the grass along an asphalt bike path.

The result? “I twisted my ankle and aggravated my injury while running on the softer and irregular surface,” he said.

In the aftermath of his accident, Dr. Tanaka said he could not find any scientific evidence that a softer surface is beneficial to runners, nor could other experts he asked. In fact, it makes just as much sense to reason that runners are more likely to get injured on soft surfaces, which often are irregular, than on smooth, hard ones, he said.

His experience makes me wonder. Is there a good reason why many runners think a soft surface is gentler on their feet and limbs? Or is this another example of a frequent error we all make, trusting what seems like common sense and never asking if the conventional wisdom is correct?

Perhaps a runner who, like me, strikes the ground with her forefoot instead of her heel, might risk more injuries on softer ground. After all, every time I push off on a soft surface, I twist my foot.

Exercise researchers say there are no rigorous gold-standard studies in which large numbers of people were assigned to run on soft or hard surfaces, then followed to compare injury rates.

There’s a good reason for that, said Stuart J. Warden, director of the Indiana Center for Translational Musculoskeletal Research at Indiana University. It’s too hard to recruit large numbers of people willing to be randomly assigned to one surface or another for their runs.

“I think the reason people haven’t answered that question is that it is not an easy question to answer,” Dr. Warden said.

When Dr. Willem van Mechelen, head of public and occupational health at VU University Medical Center in Amsterdam, searched for published studies on running injuries and how to prevent them, he, too, concluded that there were no good studies that directly support running on softer ground. “Significantly not associated with running injuries seem age, gender, body mass index, running hills, running on hard surfaces, participation in other sports, time of the year and time of the day,” Dr. van Mechelen concluded.

So what is going on? It seems obvious that the forces on your legs and feet are different depending on whether you run on soft packed dirt or on hard concrete. Why aren’t injury rates affected?

An answer that many accept comes from studies that addressed the question indirectly. In several of them, study subjects ran on plates that measured the force with which they struck the ground. Instead of varying the hardness of the ground, the researchers varied the cushioning of the shoes. More cushioning approximated running on softer ground.

Over and over again, studies like these found that the body automatically adjusts to different surfaces — at least, as mimicked by cushioning in shoes — to keep forces constant when foot strikes plate.

That finding makes sense, Dr. Warden said. If you jump from a table to the floor, you automatically bend your knees when you land. If you jump on a trampoline, you can keep your knees stiff when you land. Something similar happens when you run on different surfaces.

“If you run on a hard surface, your body decreases its stiffness,” Dr. Warden said. “Your knees and hips flex more. On a soft surface, your legs stiffen.” Running on a soft surface “is basically a different activity,” he said.

But those studies did not actually measure forces inside the body, Dr. van Mechelen noted. Instead, they used biomechanical modeling to estimate those forces.

“It is models, so God knows whether it is true,” Dr. van Mechelen said. “But to me it doesn’t seem far-fetched.”

Dr. Warden said some people adapt quicker than others to running surfaces, and he advised that anyone wanting to change from a soft to a hard surface, or vice versa, play it safe and make the change gradually.

Changing your running surface, Dr. Warden said, “is much like increasing your mileage, changing your shoes or some other aspect of your training program.” Abrupt changes can be risky.

But with no evidence that softer surfaces prevent injuries, there is no reason to run on softer ground unless you like to, Dr. Warden and other experts said. Dr. van Mechelen tells runners to get a pair of comfortable shoes and run on whatever surface they prefer.

Dr. van Mechelen, a runner himself, says his favorite surface is asphalt. Mine is too.

My coach, Tom Fleming, never suggested soft surfaces and never thought they prevented injuries. And, he said, there’s a good reason to run on asphalt, at least if you want to compete.

“Most road races are on hard roadways,” he told me. “So let’s get used to them.”

References: Gina Kolata NY Times